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P R O B L E M  O F  A S T R O N G  E X P L O S I O N  IN A W E A K L Y  C O M P R E S S I B L E  M E D I U M  

V. I. Nalimov UDC 533.6.01 

The problem of one-dimensional motions of an inviscid non-heat-conducting polytropic gas, 
which arises in the description of endothermal combustion-type physical processes, is considered. 
The medium is assumed to be weakly compressible (the adiabatic exponent is much greater than 
unity). The gas motion is initiated by a point (explosive) energy release. The goal of the paper 
is to derive approximate equations that describe the dynamics of strong explosions. 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m .  We shall assume that phase transformations of a medium occur 
according to a shock wave-phase transition pattern. The phase transition occurs if the pressure behind the 
shock wave is p >/p ,  (p, is a certain critical pressure). The continuity conditions for the flow, momentum, 
and energy of the substance should be satisfied on the surface of a discontinuity, which serves as the phase- 
transition zone, with allowance for the energy spent for the occurrence of the phase transition. 

We shall consider one-dimensional motions with plane, cylindrical, or spherical waves. Let a gas with 
the adiabatic exponent 3'0 occupy the region r/> 0 at the initial moment t = 0. The energy E0 is released at 
the coordinate origin r = 0 at the initial moment. After that, a strong explosion whose position is described 
by the equality r = R(t) moves to the right. The region 0 < r < R(t) is occupied by the moving gas with 
the adiabatic exponent 3'. The differential equations which describe the continuous motion of the gas for 
0 < r < R(t) are of the form [1] 

& + - -  (r pu)=0, Ou Ou l o p  0 p 
- -  r v ~ ' + U ~ r + - - - = 0 ' p 0 r  ~ + ~ = 0 ,  (1.1) 

where p, p, and u are the density, pressure, and velocity of the gas, respectively. The first, second, and last of 
these equations correspond to the law of conservation of mass, momentum, and entropy in the polytropic gas 
particles, respectively. The geometry parameter u = 0 refers to plane waves, u = 1 to cylindrical flows, and 
v = 2 to spherical waves. 

At the discontinuity r = R(t), the following equalities should be satisfied: 

- = - =)2 + p = .0 2 + 
(1.2) 

1 (R u _ u ) 2 +  ~t p 3'0 P0 + 1 ~2 
3' l p = 3 ' 0 - 1  po 2' - e o .  

Here p0 and p0 are the pressure and density in the gas at rest, and e0 is the specific energy consumed during 
the phase transition. 

For the total energy, the following formulas hold: 

R ) 3" -- 1 7o -- 1 + poeo dr = S,  Eo, (1.3) 
0 

where Su = 1/2, 1/2~r, and 1/4~r for v = 0, 1, and 2, respectively. 
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Thus, we should find the function R(t) and also the density p, the pressure p, and the velocity u, which 
were determined for 0 < r < R(t) from Eqs. (1.1) with boundary conditions (1.2) at a strong discontinuity 
for r = R(t), and the condition 

u = 0 (1.4) 

on the axis of symmetry with r = 0. 
At the initial moment of time, for t = 0 we have 

R ( 0 )  = 0. (1 .5)  

In addition, the law of conservation of energy (1.3) should be fulfilled for all times t > 0. 
R e m a r k  1. If one admits the existence of a free boundary r = R0(t) < R(t) such that there is no gas 

(vacuum) inside a "sphere" r < R0(t), the problem will be formulated differently: find the functions R0(t) and 
R(t) and also the density p, the pressure p, and the velocity u, which were determined for R0(t) < r < R(t) 
from system (1.1) with boundary conditions (1.2) at a strong discontinuity for r = R(t) and the condition 

= p = o (1 .6)  

at r = R0(t). At the initial moment of time, for t = 0, we have 

~ ( 0 )  = 0, a (0 )  = 0. (Z.7) 

In addition, the law of conservation of energy 

) ) j r  ~ 1 2 P p0 
5 PU + ~ dr + ~ Poeo ~/o - 1  SvEo (1.8) 

P..o 

should be satisfied for all times t > 0. 
R e m a r k  2. EquMities (1.2) for e0 = 0 and "t = "y0 relate four unknown quantities, namely, p, p, u, 

and/iY. Therefore, one can find p = r  ~) for a shock wave. It follows from the phase-transition law that the 
solution of the formulated problem has a sense for times at which the inequality @(/iY) >/p.  is fulfilled. 

2. A s s u m p t i o n s  o f  t h e  M e d i u m ' s  W e a k  C o m p r e s s i b i l i t y  and  a S t r o n g  Exp los ion .  We assume 
that ~ = l/v/" ~ << 1 and 70 = Via. Let L be the characteristic length. We set 

F =  ~ ,  ~'= P=POP, u = e  6, R = L R ( ~ ,  

p = p o ( l + ~ 2 0 ) ,  SvEo=~2poLV+IE,  e o = ~ 2 P ~  p, =po/~,. 
po 

If there is a free surface, we also assume that Ro = e2L/~(~).  
In new variables (the bar is omitted), with accuracy of up to e-junior terms, Eqs. (1.1) take the form 

0 Ou Op 0 o (rUO)+~rCrVu)=O' ~ + ~ r  = 0 '  ~ - ~ ( p e ) = 0  ( 0 < r < R ( t ) ) .  (2.1) 

It follows from the last relation that 

p = f(r)e -~ (2.2) 

with a certain negative function f ( r ) .  
The boundary conditions (1.2) will be approximately satisfied if 

/~0  = u, l_ u2 + (1 - O)p + e = O (r = R(t)); 
2 

g u  = p - 1 (r = n(t)) .  

(2.3) 

(2.4) 
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Under these assumptions, the laws of conservation of energy (1.3) and (1.8) take the form 

R 

e R ~+1 = E. (2.5) 

0 

R e m a r k  3. In subsequent calculations, we assume that  e >/0. 
Let E >> 1 and e >> 1. After that,  at least for small times, we have p >> 1 behind the strong- 

discontinuity front, and hence the unity on the right-hand side of equality (2.4) can be ignored: 

R~u = p (r = n(t)). (2.6) 

In the initial variables, this implies that  the pressure behind the strong-discontinuity front is considerably 
higher than that  in the gas at rest. Excluding the function 0 from the boundary conditions (2.3) by means of 
relation (2.6), we obtain 

(1/2) ~2 = p + e (r = n ( 0 ) .  (2.7) 

After the function 0 is discarded from Eqs. (2.1) and (2.2), we have the system 

O Ou Op _0 (r"lnp)+ Or (r%)=O, ~-~+~--~r =0 (0<r<R(t)).  (2.8) Ot 
Thus, under the assumptions of the medium's weak compressibility and of a strong explosion, problem 

(1.1)-(1.5) [or (1.1)-(1.7)] has reduced to the search for the pressure p, the velocity u, and the position of the 
strong-discontinuity front R(t) from system (2.8) with boundary conditions in the strong-discontinuity front 
(2.6) and (2.7) and the condition on the axis of symmetry 

u = 0  or p = 0  ( r = 0 )  (2.9) 

and the initial condition 

a(0 )  = O. 

In addition, the law of conservation of energy (2.5) should be satisfied for all times t > 0. 
R e m a r k  4. The phase-transition condition is of the form 

a ~2/> (1 /2 )p ,  

within the framework of the  reduced approximation. 
3. S e l f - M o d e l i n g  S o l u t i o n s  (e -- 0). As in [1], we shall search for the position of a shock wave and 

the velocity and the pressure in the form 

R(t) = [ la(v  + 3)2]U(v+3)t2/(v+3); (3.1) 

u(r,t) = R~(t)xVCz), pCr, t) = R-V-l(t)P(x),  (3.2) 

where x = r/R(t). In accordance with Eqs. (2.8), the functions V and P are found from the system 

(zv+'P(x))' = P(x)(zv+'V(x)) ' (0 < x < I); (3.3) 

( z x - ( v - 1 ) / 2 ( x ( v + 3 ) / 2 V ( x ) )  ' -~. P'(x) (0 < x < 1) (3.4) 

with boundary conditions 

, v ( 1 )  = P(1),  ( i / 2 ) , v 2 ( 1 )  = P(1),  

which are a consequence of equalities (2.6) and (2.7) for e = 0. Thus, 

V ( 1 ) = 2 ,  P ( 1 ) = 2 a .  (3.5) 
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System (3.3) and (3.4) permits a decrease in the order, because the Sedov integral is valid for it: 

x"+l[ laz2V2+ P ] - z " + I P V =  C. 

For x = 0, it follows from the condition on the axis of symmetry that C = 0, and therefore 

a x 2 V 2 
P = 2 V -  1" (3.6) 

We note that P = 2a for x = 1 and V = 2, and hence the second equality in (3.5) is a consequence of the 
first equality. 

The constant a is determined from the law of conservation of energy (2.5): 

1 x v + 2 y 3  ~ 
"2 7 - -  1 dx = E. 1.7) 

0 

Excluding the pressure from Eq. (3.4) with the use of equality (3.6), we find an equation on V: 

z(V2 - 2V + 2)V' = - ( v  + I ) V ( V - 1 )  ( V -  v + 31). 
v+  

It is easy to integrate this equation: 

u + 1 - x ~'+1 ' 

where 

v + l  v + l  v2+2v-l-5 
v l = 2 v +  3, v 2 =  2 ' v3 2 ( v + 3 )  

For the boundary conditions (3.5), it follows that,  for v = 2, no self-modeling solutions with the finite 
energy integral (3.7) exist in the case of spherical symmetry. 

For axisymmetrical flows (v = 1), we have 

V = 2 ,  P = 2 a z  2, a = E ,  R( t )=(4E) l /4 t  1/2. (3.8) 

Finally, in the case of plane waves (v = 0) we have C = 2 2/3, V(0) = 1, and 

E ] V 2 - 2V + 2 3 
a = 2" J (V --]')T]/2"~-- ~)r/2 dV = ~ E, R(t) = 3. 2-4DE'Dr 2/3 ~, 1.19055E'Dt 2/3. (3.9) 

1 

R e m a r k  5. For plane waves, at x --* 0 we have 

V ~ 1 + 21/3x 2, P ,',, a/24/3, 

and hence the free surface does not exist. 
For cylindrical waves, the pressure and the velocity vanish on the axis of symmetry. The problem of 

the formation of a free surface has no solution within the framework of this approximation. 
The absence of self-modeling solutions in the case of spherical symmetry means that  the approximation 

of the medium's weak compressibility does not adequately describe the flow with a free surface. 
4. Va r i a t i ona l  P r i n c i p l e .  
T h e o r e m .  The solutions of the equations of motion of a continuous medium (2.6)-(2.9) coincide with 

the extremals of the action functional 

u 2 - p - dr dt (4.1) 

0 0 

(r v In P)t + (rVu)r = 0. (4.2) 

under the additional condition 
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Proof .  For any function g(r, t), we set .#(t) = g(R(t), t). The variation of the functional (4.1) relative 
to R immediately yields 

T 

0 

The boundary condition (2.7) follows owing to the arbitrariness of ~R. After that ,  we set 

p = exp{r-Uf,(r,t)}, u = -r -Vf t (r ,  t) (4.3) 

with a smooth function f such that r-~f --+ 0 (or r-*'f --+ -c~) at r --+ 0. Thereby the condition on the axis of 
symmetry (2.9) and the law of conservation of mass (4.2) for the functions u and p are satisfied automatically. 
In view of this, one can consider the functional 

T R  

o 0 

instead of the functional (4.1) with restrictions (2.9) and (4.2). Varying this functional with respect to f under 
the assumption that  6f(r,  O) = 6f(r, T) = 0, we obtain 

T R  T 

0 0 0 

after integration by parts. By virtue of the arbitrariness of gf  and ~f,  the second equation follows from (2.8) 
and the boundary condition (2.6). The theorem is proved. 

5. A p p r o x i m a t e  S o l u t i o n s .  We shall search for approximate solutions of problem (2.6)-(2.9) as the 
extremals of the functional (4.1) in the classes of functions of the form (3.2) with the desired function R(t) 
under the condition that  the functions V and P satisfy relation (3.3). 

For specified functions V and P,  the functional (4.1) takes the form 

:(, ) S(R) = : A(V)R~2RU+: _ e RU+: d t -  TS (P) ,  (5.1) 
v + l  

0 

where 
1 1 

I A(V) = 

o o 

The integrand F(R,  1~) on the right-hand side of (5.1) is not t ime-dependent explicitly. Therefore, the 
Euler equations of the functional S(R) have the following first integral [2]: - / ~ F  R, + F = C. It is easy to 
verify that,  with the constant C chosen properly, the first integral coincides with the energy integral (2.5) for 
functions u and p of the form (3.2): 

e R v+l = E. (5.3) AI~2R v+l + B + 

We note that  the equalities 

- A I ~ ' R  v+2 = (v + 1)A/i:2R V+l + eR u+l, 

T T 
-~ E - B R "+1 dt 

v + l T  
0 0 

follow from (5.3) with the use of differentiation and integration operations. These equalities can be reduced 
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to the form 

where 

T T 1/ 1/ .+1 
7f R'2R t'+l dt = a - b ,  - ~  R"R v + 2 d t =  2 

0 0 

- -  a ,  ( 5 . 4 )  

We set 

T 

a =  ( E - B ) ,  b -  ( v + I ) A T  
0 

f ( r ,  t) -~ - - r  u+l In R -}- R u + l g ( x )  (x  = r / R ) .  (5.6) 

The equalities (3.2) for u and p with the functions 

P(x) = exp{x-Vg'(x)}, V(z) = 1 - (u + 1 )x -v - 'g (x )  + x-vg'(x) (5.7) 

follow from the representations (4.3). With this choice of the functions V and P,  relation (3.3) is satisfied 
automatically and, as a consequence, equality (4.2) holds. 

Next, we shall search for the extremal of the functional (4.4) in the classes of functions of the form 
(5.6) for a specified function R(t). The set of functions of the form (5.6) contains no time-finite functions. 
Therefore, we shall consider the sequence of variations of the form 

(~fn = qa,,(t)R v+' gg(z), 

where ~a,,(t) are uniformly bounded smooth nonnegative functions. They vanish for t = 0 and t = T and 
converge to unity for rt --* oo inside the interval (0, T). Substi tuting 6f,, into formula (4.5) within the limit 
for rt --* oo after the replacement of r by z, we obtain 

( )' ax  -(t'-1)12 x(u+a)/2V - b x ( x g ) '  = P '  (0 < x < 1); (5.8) 

P(1) = ( a -  (5.0) 

owing to the arbitrariness of 6g(x) and 69(1). 
Based on the  aforesaid, one can formulate the problem of the search for approximate solutions. 
Approximate Formulation L One should find the function R(t) on the interval (0, T), the functions 

V(x) and P(z) on the  interval (0,1), and also the parameters a and b from the energy integral (5.3), Eqs. 
(3.3) and (5.8), relations (5.5), the boundary condition (5.9), and the initial condition R(0) = 0. For x = 0, 
one of the two conditions 

l i m x V ( x ) = 0  or P ( 0 ) = 0  
z--*0 

should be satisfied. In the  first case, there is no free surface. In the case of the second boundary condition, 
the free surface exists if l im xV(z)  > O. 

z--.*0 
R e m a r k  6. For e = 0, the approximate formulation coincides with the problem of the search for 

self-modeling solutions. 
We obtain a simpler model if we take the family of functions g(z, ~), which depends on the vector 

parameter ~ = (~1, . . . ,~k) ,  in equality (5.6). In this case, the functions P and V, which were defined by 
formulas (5.7), are known functions of the variable x and the parameter  ~ which satisfy relation (3.3). The 
quantities A and B determined in (5.2) are known functions of ~. As before, the derivatives with respect to z 
are primed. 

We shall find the extremal of the functional (4.4) in the class of functions (5.6) with functions g(z, ~), 
which belong to the family described above. 

The variation of the functional (4.4) relative to R produces, as before, the energy integral (5.3). 
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To derive equations that determine the parameter ~, we consider the sequence of perturbations of the 
function f of the form 

6I.  = g(x, (t). 

The sequences ~p,,(t) and Cn(x) consist of uniformly bounded nonnegative functions; we have ~ , ( t )  = 0 for 
l = 0 and t = T, and we have Cn(x) = 0 for x -- 0 and x -- 2. In addition, we have ~a(t) ---, 1 and r  -~ 1 
for n ~ oo. Passing to the limit relative to n in equality (4.5) and with r replaced by x, we obtain 

1 1 1 
v + 1 aJ vv gd +(o- b)Jx( v)'v gdx - F(l, )IV g(S 2 

0 0 0 

owing to the arbitrariness of 5~. Integrating by parts and excluding the function g by means of formulas (5.7), 
we obtain 

1 

- 

0 

1 1 
v - - 1  

0 0 

Approximate Formulation II. Let there be the set of functions V(x, ~) and P(x, ~) which depends on the 
vector parameter ~. These functions satisfy the equality (3.3) and one of the following boundary conditions: 

lim xV(z,~) = 0 or P(0,r = 0. (5.11) 
x----*0 

It is necessary to find the function R(t) on the interval (0, T) and the parameters a, b, and ~ from the 
energy integral (5.3), systems (5.10) and equalities (5.4), and the initial condition R(0) = 0. 

Next, we assume that  Eqs. (5.10) and the first relation in (5.4) determine the desired quantities ~(b) 
and a(b) versus the parameter b. Formulas (5.2) define the functions A(b) and B(b). The problem of the search 
for the position of a strong discontinuity is reduced to finding the parameter b and the function R(t) from the 
energy integral (5.3), the second equality in (5.4), and the initial condition R(0) = 0. 

To solve Eq. (5.3) for e ~ 0, it is expedient to set 

M(b) -- {e - l (v  + 1)[E - B]} 1/(v+1), g2(b) = A-1M-~-S(E - B) 

and to introduce the new desired function Z = M-1R. The equation on Z(t, b) 

Z'Z (v+1)/2 = K(1 - ZU+l) 1/2 

with zero initiM data for t -- 0 determines the dependence of t on Z and b: 

t = K - ' F ~ ( Z ) ,  (5.12) 

where 
z 

Fv(Z) = /Z(v+D/2(1 - ZU+') - ' /2  dZ. (5.13) 

0 

The equality (5.12), which is treated as an equation on Z, determines Z.(b) = Z(T,b). In accordance with 
the second equation in (5.4), the parameter b should be found from the equation 

where 

b = T- I (E  - B)K-1Gv(Z,),  

Z 

Gu(Z) = / Z3(U+1)/2(1 - Z~+l) -U2 dZ. 
0 

(5.14) 

(5.15) 
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Thereby the problem is completely defined. It was reduced to the solution of Eq. (5.14). We note that  the 
integrals (5.13) and (5.15) are calculated via elementary functions for v = 0 and 1. For example, for g = 1, 
we h a v e  

F, (Z)=l - ( l -Z2)  '/2, G,(Z)- 2 l ( 2 + Z  2 )k / l -Z  2. 
3 3 

According to Remark 4, it is natural to choose T from the condition R~2(T) = p,/2 in problems with 
phase transitions. In this case, the limiting position of the phase-transition front R, = M(b)Z,(b) is found 
from the energy integral (5.3), where 

v + 1 \-1/(~+1) 
Z,(b) = , + ~ Ap,)  

The equation takes the following form in terms of b: 

b = (E - B)Fy'(Z,)G, , (Z,) .  

(5.16) 

(5.17) 

The latter two equations, together with Eqs. (5.10) and the first relation in (5.4), are the system for 
determination of the parameters 6, a, b, and Z,. 

In the case of a shock wave (e = 0), the situation is much simpler. It follows from the second equality 
in (5.4) that  b = 0. Therefore, Eqs. (5.10) and the first relation in (5.4) are determined by the parameters 6 
and a. According to the first equality in (5.4), the function R(t) takes the form (3.1). 

E x a m p l e  1. Let e = 0. We choose the families V(x, 6) and P(x,6) entering the definition of the 
approximate solution of problem II in the form 

V -- 61, P -- 62z (u+l)(~'-l) (61 > 0, 62 > 0). (5.18) 

Equations (5.10) and the  first relation in (5.4) produce the system for determination of the parameters 61, 62, 
and a: 

ad = (v + 3)62, 26~ = ad, 2(v + 3------) + 6,(v + 1) = E. 

We find that  
8(v + 1) 

61-- v+23, 6 2 = i  v + l ) E ,  a---- (v+3)  - - - - - ~ E "  (5.19) 

With allowance for (3.1), we obtain 

R(0 = (2(v + 1)E)~/("+s)t2/("+3). 

R e m a r k  7. The  approximate solution that  we found coincides with the self-modeling solution (3.6) 
for v = 1. For v = 0, we have 

R(t) -- 2113 El/3t213 ~- 1.25992El/3t 2/3, 

which is in agreement with formula (3.9). The question of the existence of an exact solution in the case of 
spherical symmetry  and of the closeness of the approximate and exact solutions is omit ted  here. 

E x a m p l e  2. Let e ~ 0 and Eq. (5.18) be the family of functions which determine the solution of 
problem II. We suppose tha t  e/p, << 1. It follows from system (5.16) and (5.17) that  Z,  << 1 and A = b/a << 1. 
According to what was said above, the parameter a is calculated by formula (5.19). Therefore, for the limiting 
position of the phase-transition front the following approximate formula holds: 

R,  : (16(v + 1)E/ (v  + 3)2p,) I/(~+'}. 

We have ignored the  energy expenditures in phase transitions. One can make allowance for them in a 
relatively simple way if the approximate solution is found from Eq. (5.17): 

= 2(v + 3) e 
(~ + 1)(3~ + 5) p, 
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Together with (5.2), Eqs. (5.10), (5.4), and (5.16) define the functions ~1, 42, a, A, and B of variables 
and E. The formula for the limiting value of R, is fairly cumbersome, and we omit it here. 
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